

## Moisture Related Reliability in Electronic Packaging

2008

Instructor

Xuejun Fan Department of Mechanical Engineering Lamar University Beaumont, TX 77710

E-mail: xuejun.fan@lamar.edu







| Outline                                                                  | 5 |
|--------------------------------------------------------------------------|---|
| Introduction                                                             |   |
| <ul> <li>Moisture absorption, desorption, and diffusion</li> </ul>       |   |
| Vapor pressure model                                                     |   |
| Case study I – underfill selection for FC BGA packages                   | ; |
| <ul> <li>Case study II – delamination/cracking in stacked-die</li> </ul> |   |
| chip scale packages                                                      |   |
| <ul> <li>Accelerated moisture sensitivity test</li> </ul>                |   |
| <ul> <li>Effect of moisture on material properties</li> </ul>            |   |
| Hygroscopic swelling                                                     |   |
| Electrochemical metal migration                                          |   |
| Summary                                                                  |   |
| References                                                               |   |
| Xuejun Fan Moisture-Related Reliability xuejun.fan@lamar.edu             |   |



















|       |                        | Table         | 5-1 Moisture Ser          | sitivity Levels |           |
|-------|------------------------|---------------|---------------------------|-----------------|-----------|
| LEVEL | FLOO                   | RIJFE         | Star                      | SOAK REQ        | JIREMENTS |
|       | ТІМЕ                   | CONDITIONS    | TIME (hours)              | CONDITIONS      | -         |
| 1     | Unlimited              | ≤30 °C/85% RH | 168<br>+5/-0              | 85 °C/85% RH    |           |
| 2     | 1 year                 | ≤30 °C/60% RH | 168<br>+5/-0              | 85 °C/60% RH    |           |
| 2a    | 4 weeks                | ≤30 °C/60% RH | 696 <sup>2</sup><br>+5/-0 | 30 °C/60% RH    |           |
| 3     | 168 hours              | ≤30 °C/60% RH | 192 <sup>2</sup><br>+5/-0 | 30 °C/60% RH    | MSL 3     |
| 4     | 72 hours               | ≤30 °C/60% RH | 96 <sup>2</sup><br>+2/-0  | 30 °C/60% RH    |           |
| 5     | 48 hours               | ≤30 °C/60% RH | 72 <sup>5</sup><br>+2/-0  | 30 °C/60% RH    |           |
| 5a    | 24 hours               | ≤30 ^C/60% RH | 48 <sup>2</sup><br>+2/-0  | 30 °C/60% RH    |           |
| 6     | Time on Label<br>(TOL) | ≤30 °C/60% RH | TOL                       | 30 °C/60% RH    |           |





|                | <ul> <li>Highly Accelerated Stress Test (HAST)</li> <li>Biased HAST</li> <li>Unbiased HAST <ul> <li>HAST</li> <li>Autoclave (Steam) – 121°C/100%RH</li> </ul> </li> </ul> |                     |                               |                                |  |  |  |  |
|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-------------------------------|--------------------------------|--|--|--|--|
|                | Environmental Test                                                                                                                                                        | Temperature (°C)    | Relative<br>Humidity<br>(%RH) | Static<br>/Dynamic<br>Bias (V) |  |  |  |  |
|                | ТНВ                                                                                                                                                                       | 85                  | 85 / 60                       | 0.1 to 7                       |  |  |  |  |
|                |                                                                                                                                                                           | 55                  | 85 / 60                       |                                |  |  |  |  |
|                |                                                                                                                                                                           | 30                  | 85 / 60                       |                                |  |  |  |  |
|                | HAST                                                                                                                                                                      | 156                 | 85 / 60 / 50                  |                                |  |  |  |  |
|                |                                                                                                                                                                           | 130                 | 85 /60 / 50                   |                                |  |  |  |  |
|                |                                                                                                                                                                           | 120                 | 85 /60 / 50                   |                                |  |  |  |  |
|                |                                                                                                                                                                           | 110                 | 85 /60                        |                                |  |  |  |  |
| For the Decree | Xuejun Fan                                                                                                                                                                | Moisture-Related Re | eliability xuejun.f           | an@lamar.edu                   |  |  |  |  |

| Sum                            | Summary: Kinetic & Moisture Driven Failures                                                                                                                     |                                        |                           |  |  |  |
|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|---------------------------|--|--|--|
| MECHANISM                      | DESCRIPTION                                                                                                                                                     | DRIVING<br>FORCES                      | RELIABILITY<br>STRESS     |  |  |  |
| M+ Migration                   | Metal ion migration between contacts or traces that results in a short circuit                                                                                  | Temperature<br>Humidity<br>Voltage     | Biased HAST               |  |  |  |
| Interfacial delamination       | Delamination between two materials that were<br>bonded together that result in cracks and open circuits<br>or migration paths (bond breaking with added energy) | Temperature<br>Humidity                | HAST / Bi HAST<br>/Precon |  |  |  |
| Intermetallic<br>IMC formation | Formation of intermetallic compound that is different<br>in volume and with brittle properties that may result in<br>open circuits or shorts                    | Temperature                            | Bake                      |  |  |  |
| Kirkendall<br>voiding          | Occurs with IMCs as charge moves from higher to<br>lower potential area in material                                                                             | Temperature                            | Bake<br>Manufacturing     |  |  |  |
| Electromigration voiding       | Void left as material is picked up with electron wind (current flow)                                                                                            | Temperature<br>Current<br>Mech. Stress | Electromigration          |  |  |  |
| Thermal material degradation   | Thermal resistance and mechanical degradation resulting from polymer degradation and micro-crack                                                                | Temperature<br>Mech. Stress            | Bake                      |  |  |  |
| Dielectric<br>cracking         | Cracking in polymers or glasses that results from moisture assisted crack growth propagation                                                                    | Humidity<br>Temperature                | HAST<br>Steam/TH/Precon   |  |  |  |
| ECT@**                         | Xuejun Fan Moisture-Related Reliability                                                                                                                         | xuejun.fan@                            | lamar.edu                 |  |  |  |

| Summary                                                                                                                                                                                                                                                                                                                                                                           | 20 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| <ul> <li>3 failure mechanisms due to moisture         <ul> <li>'Popcorn' at soldering reflow (vapor pressure, adhesion reduction)</li> <li>Delamination under HAST (hygroscopic swelling, adhesion reduction, moisture aging)</li> <li>Metal migration under BiHAST (e.g. dendritic growth. Moisture, voltage, contamination)</li> </ul> </li> <li>3 reliability tests</li> </ul> |    |
| <ul> <li>Moisture sensitivity test (MSL 1, MSL 2, MSL 3)</li> <li>MSL 3 - 30°C/60%RH for 192 hours</li> <li>HAST/TH</li> <li>BiHAST/BiTH</li> </ul>                                                                                                                                                                                                                               |    |
| Understanding moisture diffusion is a key                                                                                                                                                                                                                                                                                                                                         |    |
| Xuejun Fan Moisture-Related Reliability xuejun.fan@lamar.edu                                                                                                                                                                                                                                                                                                                      |    |















|     | Moist                                | ure Diffusion                                 | Modeling                  |
|-----|--------------------------------------|-----------------------------------------------|---------------------------|
| • T | hermal-moistur                       | e analogy                                     |                           |
| Γ   | Properties                           | Thermal                                       | Moisture                  |
| ſ   | Field variable                       | Temperature, T                                | $\phi = C/S$              |
| ſ   | Density                              | ρ                                             | 1                         |
| F   | Conductivity                         | k                                             | DS                        |
| Γ   | Specific capacity                    | С                                             | S                         |
|     | Moisture concen<br>Moisture diffusiv | tration: C= $\phi$ S<br>ity: D = DS/(1xS) = D |                           |
|     |                                      |                                               |                           |
| СТС | Z008 Xuejun Fan                      | Moisture-Related Reliabi                      | lity xuejun.fan@lamar.edu |



































| Tem                                                                      | perature D                                                                                        | epend                                         | ency                                       | of D                      | iffusivity                              | 46 |
|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-----------------------------------------------|--------------------------------------------|---------------------------|-----------------------------------------|----|
| Diffusivi                                                                | ity D(T) vs. ter                                                                                  | nperat                                        | ure T                                      | – Arrh                    | enius relation                          |    |
|                                                                          | <i>D</i> =                                                                                        | $= D_0 \exp\left(\frac{H}{k}\right)$          | $\left(\frac{Z_d}{T}\right)$               |                           |                                         |    |
|                                                                          | Diffusivity constants fo<br>30 and 85 °C                                                          | r typical pa                                  | ckaging r                                  | naterials be              | etween                                  |    |
|                                                                          | Materials                                                                                         | Diffusivit                                    | y                                          |                           |                                         |    |
|                                                                          |                                                                                                   | $D_0$                                         | cm <sup>2</sup> /s)                        | $E_{d}$ (eV)              |                                         |    |
|                                                                          | Molding compound                                                                                  | 3.82e-3                                       |                                            | -0.38                     |                                         |    |
|                                                                          | Die attach                                                                                        | 4.58e-2                                       |                                            | -0.46                     |                                         |    |
|                                                                          | Solder resist                                                                                     | 1.65e - 1                                     |                                            | -0.47                     |                                         |    |
|                                                                          | Laminate core (BT)                                                                                | 3.33e-4                                       |                                            | -0.32                     |                                         |    |
|                                                                          | Underfill                                                                                         | 4.27e-4                                       |                                            | -0.3                      |                                         |    |
| <ul> <li>D increase</li> <li>Near or a of constand material a</li> </ul> | ses with temperat<br>above T <sub>g</sub> , the Arrh<br>ints reflecting the<br>across the transie | ure expo<br>enius rel<br>change i<br>nt tempe | nential<br>ation is<br>n the n<br>erature. | ly<br>describ<br>nolecula | ed with a new set<br>r structure of the |    |
| The Hardware Compared                                                    | Xuejun Fan M                                                                                      | oisture-Relate                                | ed Reliabili                               | ty                        | xuejun.fan@lamar.edu                    |    |

| Colubin                                | $S = \frac{C_{sa}}{P}$<br>$C_{sat}$ (60%RH) and activ | $\frac{t}{t} = S_0 \exp(\frac{t}{2})$ | $\left(\frac{E_s}{kT}\right)$ | backaging ma-          |             |
|----------------------------------------|-------------------------------------------------------|---------------------------------------|-------------------------------|------------------------|-------------|
|                                        | terials<br>Materials                                  | C <sub>sat</sub> (mg/c                | cm <sup>3</sup> )             | $E_{\rm s}~({\rm eV})$ |             |
|                                        |                                                       | 30 °C                                 | 85 °C                         | Curve fit              |             |
|                                        | Molding compound                                      | 1.76                                  | 1.81                          | 0.44                   |             |
|                                        | Die attach A                                          | 7.53                                  | 7.41                          | 0.45                   |             |
|                                        | Die attach B                                          | 7.07                                  | 9.56                          | 0.37                   |             |
|                                        | Solder resist                                         | 15.9                                  | 16.8                          | 0.44                   |             |
|                                        | Laminate core (BT)                                    | 4.83                                  | 4.5                           | 0.46                   |             |
| <ul> <li>When tem positive)</li> </ul> | nperature increase                                    | s solubil                             | ity decrea                    | ises ( activa          | tion energy |





























|                                                                                                                |                                      | S   | Stea    | am      | Tak      | ble    |       |         |               |
|----------------------------------------------------------------------------------------------------------------|--------------------------------------|-----|---------|---------|----------|--------|-------|---------|---------------|
| <b>1</b> 0                                                                                                     | C) 2                                 | 0   | 30      | 40      | 50       | 60     | 70    | 80      |               |
| ρ <sub>g</sub> (g/cn                                                                                           | <sup>2</sup> ×10 <sup>-3</sup> ) 0.0 | )17 | 0.03    | 0.05    | 0.08     | 0.13   | 0.2   | 0.29    |               |
| $p_{g}(\mathbf{N})$                                                                                            | IPa) 0.0                             | 002 | 0.004   | 0.007   | 0.01     | 0.02   | 0.03  | 0.05    |               |
| The second s | C) 9                                 | 0   | 100     | 110     | 120      | 130    | 140   | 150     |               |
| ρ <sub>g</sub> (g/cn                                                                                           | <sup>2</sup> ×10 <sup>-3</sup> ) 0.4 | 42  | 0.6     | 0.83    | 1.12     | 1.5    | 1.97  | 2.55    |               |
| $p_g(\mathbf{N})$                                                                                              | 1Pa) 0.0                             | 07  | 0.1     | 0.14    | 0.2      | 0.27   | 0.36  | 0.48    |               |
| 70                                                                                                             | C) 10                                | 50  | 170     | 180     | 190      | 200    | 210   | 220     |               |
| $\rho_g(g/cn$                                                                                                  | <sup>2</sup> ×10 <sup>-3</sup> ) 3.2 | 26  | 4.12    | 5.16    | 6.4      | 7.86   | 9.59  | 11.62   |               |
| $p_g(\mathbf{N})$                                                                                              | IPa) 0.                              | 62  | 0.79    | 1       | 1.26     | 1.55   | 1.91  | 2.32    |               |
| 70                                                                                                             | C) 2:                                | 30  | 240     | 250     | 260      | 270    | 280   | 290     |               |
| $\rho_g(g/cn$                                                                                                  | <sup>2</sup> ×10 <sup>-3</sup> ) 1   | 4   | 16.76   | 19.99   | 23.73    | 28.1   | 33.19 | 39.16   |               |
| p <sub>g</sub> (N                                                                                              | IPa) 2.                              | .8  | 3.35    | 3.98    | 4.69     | 5.51   | 6.42  | 7.45    |               |
|                                                                                                                |                                      |     |         |         |          |        |       |         |               |
| 2008 Xueiun                                                                                                    | Fan                                  | м   | oisture | -Relate | d Relial | bility |       | xueiun. | fan@lamar edu |


























|                                                                              | Unde | erfill Mate | erial Pro    | perties          | - Mech      | anical        | 76 |  |  |  |  |  |
|------------------------------------------------------------------------------|------|-------------|--------------|------------------|-------------|---------------|----|--|--|--|--|--|
|                                                                              |      |             |              |                  |             |               |    |  |  |  |  |  |
|                                                                              |      | CTE1        | CTE2         | Tg               | <b>E1</b> , | , E2          |    |  |  |  |  |  |
|                                                                              | UF   | ppm/°C      | ppm/°C       | °C               | G           | Pa            |    |  |  |  |  |  |
|                                                                              | UF-A | 31          | 90           | 133              | 8           | 1.7           |    |  |  |  |  |  |
|                                                                              | UF-B | 18          | 40           | 128              | 12          | 4             |    |  |  |  |  |  |
|                                                                              | UF-C | 25          | 93           | 117              | 9.6         | 1.4           |    |  |  |  |  |  |
|                                                                              | UF-D | 27          | 78           | 144              | 7           | 4.5           |    |  |  |  |  |  |
|                                                                              | UF-E | 68          | 197          | 155              | 2.2         | 1.05          |    |  |  |  |  |  |
|                                                                              | UF-F | 61          | 199          | 102              | 2.7         | 0.05          |    |  |  |  |  |  |
| <ul> <li>It seems the underfill A is an ideal candidate material.</li> </ul> |      |             |              |                  |             |               |    |  |  |  |  |  |
|                                                                              | 2008 | Xuejun Fan  | Moisture-Rel | ated Reliability | xuejun.     | fan@lamar.edu |    |  |  |  |  |  |



| 5        | Summa<br>Resi | ry<br>ult | of Moistur<br>s for Flip C | e Sensitivi<br>hip Packa | ty Test<br>ges     | 78 |
|----------|---------------|-----------|----------------------------|--------------------------|--------------------|----|
| • For co | ontrolled s   | sam       | ples tested in l           | Level 3 (30°C/6          | 0 %RH) (UF-A       | )  |
|          | Leg ID        |           | Configuration              | # unit with this failu   | re mode            |    |
|          |               |           |                            |                          |                    |    |
|          | A1            | ł         | oall layout 1, molded      | 3/24                     |                    |    |
|          | A2            | ba        | ll layout 1, not molded    | 5/24                     |                    |    |
|          | A3            |           | oall layout 2, molded      | 4/24                     |                    |    |
|          | A4            | ba        | ll layout 2, not molded    | 6/24                     |                    |    |
| For Ul   | F-C and U     | F-E       |                            |                          |                    |    |
|          | Under         | fill      | Total number               | of failure units         | 7                  |    |
|          |               |           | MSL 3                      | MSL 2                    |                    |    |
|          | UF-C          |           | 0/24                       | 0/18                     |                    |    |
|          | UF-E          |           | 0/18                       | Not Available            |                    |    |
|          | Xuejun F      | an        | Moisture-Related           | l Reliability xu         | ejun.fan@lamar.edu |    |







































|       | Validatio                                             | n: Ex  | perime           | ntal Re  | esults      |           | 98 |
|-------|-------------------------------------------------------|--------|------------------|----------|-------------|-----------|----|
|       | Thickness (µm)                                        | Leg1   | Leg 2            | Leg 3    | Leg 4       | Leg 5     | ]  |
| -     | Solder Mask                                           | 1x     | 1.02x            | 1.04x    | 1.04x       | 1.37x     |    |
| -     | Inner Cu density                                      | 0%     | 50%              | 50%      | 50%         | 50%       |    |
| -     | BT-Core                                               | 1y     | 1.09y            | 1.43y    | 1.47y       | 1.44y     |    |
| -     | Total                                                 | 1z     | 1.20z            | 1.47z    | 1.47z       | 1.53z     |    |
| -     | Delam Rate                                            | 0%     | 7%               | 32%      | 47%         | 100%      |    |
| L     | Comments:<br>• BT-core thickness is largest modulator |        |                  |          |             |           |    |
| ECTQ0 | 8 Xuejun Fan                                          | Moistu | ire-Related Reli | iability | xuejun.fan@ | lamar.edu |    |









| Accelerated Equivalent |                        |               |                           |                 |                                     |              |  |  |  |
|------------------------|------------------------|---------------|---------------------------|-----------------|-------------------------------------|--------------|--|--|--|
| IPC/JEDEC J-STD-020C   |                        |               |                           |                 |                                     |              |  |  |  |
|                        |                        | Table         | 5-1 Moisture Ser          | sitivity Levels |                                     |              |  |  |  |
| SOAK REQUIREMENTS      |                        |               |                           |                 |                                     |              |  |  |  |
| LEVEL                  | FLOO                   | R LIFE        | Star                      | ndard           | Accelerated Equivalent <sup>1</sup> |              |  |  |  |
|                        | TIME                   | CONDITIONS    | TIME (hours)              | CONDITIONS      | TIME (hours)                        | CONDITIONS   |  |  |  |
| 1                      | Unlimited              | ≤30 °C/85% RH | 168<br>+5/-0              | 85 °C/85% RH    |                                     |              |  |  |  |
| 2                      | 1 year                 | ≤30 °C/60% RH | 168<br>+5/-0              | 85 °C/60% RH    |                                     |              |  |  |  |
| 2a                     | 4 weeks                | ≤30 °C/60% RH | 696 <sup>2</sup><br>+5/-0 | 30 °C/60% RH    | 120<br>+1/-0                        | 60 °C/60% RH |  |  |  |
| 3                      | 168 hours              | ≤30 °C/60% RH | 192 <sup>2</sup><br>+5/-0 | 30 °C/60% RH    | 40<br>+1/-0                         | 60 °C/60% RH |  |  |  |
| 4                      | 72 hours               | ≤30 °C/60% RH | 96 <sup>2</sup><br>+2/-0  | 30 °C/60% RH    | 20<br>+0.5/-0                       | 60 °C/60% RH |  |  |  |
| 5                      | 48 hours               | ≤30 °C/60% RH | 72 <sup>2</sup><br>+2/-0  | 30 °C/60% RH    | 15<br>+0.5/-0                       | 60 °C/60% RH |  |  |  |
| 5a                     | 24 hours               | ≤30 °C/60% RH | 48 <sup>2</sup><br>+2/-0  | 30 °C/60% RH    | 10<br>+0.5/-0                       | 60 °C/60% RH |  |  |  |
| 6                      | Time on Label<br>(TOL) | ≤30 °C/60% RH | TOL                       | 30 °C/60% RH    |                                     |              |  |  |  |
| CIG                    | Xu                     | ejun Fan      | Moisture-Relate           | d Reliability   | xuejun.fan@l                        | amar.edu     |  |  |  |















































|          |            | Adl          | hesion          | Test D           | OE        | 127              |
|----------|------------|--------------|-----------------|------------------|-----------|------------------|
| • For un | derfill/   | polvin       | nide inte       | rface (U         | F/PI)     |                  |
|          |            |              |                 | (0500)           | ••••      |                  |
| - Snea   | ar test at | room te      | emperature      | (25°C)           |           |                  |
| ]        | UF/PI, S   | hear Test, I | Room Temperatur | e, Chip to Chip  | Sample    |                  |
| ſ        | Underfill  | Dry          | 85°C/85RH       | 85°C/85RH        | 85°C/85RH |                  |
|          |            |              | 11 days         | 17 days          | 21 days   |                  |
| ſ        | UF-1       | V            | v               | V                | V         |                  |
|          | UF-2       | V            | v               | v                | v         |                  |
|          | UF-3       | V            | v               | v                | v         |                  |
| – Sh     | ear test a | t reflow     | v temperatu     | ıre (220 °0      | C)        | _                |
|          | Underfill  | Dry          | 30°C/60RH       | 85°C/60RH        | 85°C/85RH |                  |
|          |            |              | 21 days         | 21 days          | 21 days   |                  |
|          | UF-1       | v            | v               | v                | v         |                  |
|          | UF-2       | v            | v               | v                | v         |                  |
|          | UF-3       | v            | V               | v                | v         |                  |
|          | • 5        | ample s      | ize: 16         |                  | <u> </u>  |                  |
| ECT2008  | Xuejun     | Fan          | Moisture-Rela   | ated Reliability | xuej      | un.fan@lamar.edu |




















































| Materials             |     | D<br>(mm²/s) | )    | CME<br>(mm <sup>3</sup> /mg) | (r      | Csat<br>ng/mm³) | т    | otal hygro strain<br>(CME x Csat) |
|-----------------------|-----|--------------|------|------------------------------|---------|-----------------|------|-----------------------------------|
| Underfill A           |     | 9.02e-6      | ;    | 0.18                         |         | 0.0152          |      | 0.0027                            |
| Underfill B           |     | 1.55e-6      | ;    | 0.22                         |         | 0.0329          |      | 0.0072                            |
| Underfill C           |     | 1.14e-5      | i    | 0.31                         |         | 0.0112          |      | 0.0035                            |
| Mold Compour          | nd  | 2.79e-6      | ;    | 0.4                          |         | 0.0043          |      | 0.0017                            |
| Solder Mask           |     | 4.83e-5      | ;    | 0.2                          |         | 0.0143          |      | 0.0029                            |
| BT Substrate          |     | 2.13e-6      | ;    | 0.4                          |         | 0.0075          |      | 0.0030                            |
|                       |     | Mold (       | Comj | pound                        |         |                 | Die  | e Attach                          |
|                       | Tot | al Strain    | Ec   | quivalent mea<br>CTE (ppm/°C | an<br>) | Total St        | rain | Equivalent mean CTE (ppm/°C)      |
| Thermo-<br>mechanical | 1   | 1.53e-3      |      | 34                           |         | 7.65e-3         |      | 170                               |
| Hygro-<br>mechanical  | 1   | .57e-3       |      | 34.9                         |         | 3.22e-          | 3    | 71.6                              |





































|                                                                                                                                                                | 173                                                                                                                                                                              |                                                                                                                                                                                                                             |                                                                                                      |                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------|
|                                                                                                                                                                | ENVIRONMENT                                                                                                                                                                      |                                                                                                                                                                                                                             | + PROCESS                                                                                            |                  |
|                                                                                                                                                                | Reaction                                                                                                                                                                         | Mechanism (schematic)                                                                                                                                                                                                       | Acceleration Factors                                                                                 |                  |
|                                                                                                                                                                | Water adsorption and diffusion                                                                                                                                                   | (Water report)                                                                                                                                                                                                              | Moisture content     Temperature     Material quality                                                |                  |
|                                                                                                                                                                | Changes in pH due to<br>the electrolysis of water<br>(acidization)                                                                                                               | H <sup>®</sup> H <sup>®</sup> OH' OH'<br>H <sup>®</sup> H <sup>®</sup> OH' OH'<br>H <sup>®</sup> OH'                                                                                                                        | Voltage     Moisture content     Temperature                                                         |                  |
|                                                                                                                                                                | Copper elution and<br>copper ion diffusion<br>(diffusion)                                                                                                                        | Cu <sup>2</sup> Cu <sup>2</sup> Cu <sup>2</sup> Concertration<br>graderet                                                                                                                                                   | Voltage     Moisture content     Material quality     pH, impurity ions     Dissolved oxygen content |                  |
|                                                                                                                                                                | Electron transfer and ion migration (reduction)                                                                                                                                  |                                                                                                                                                                                                                             | <ul> <li>Voltage</li> <li>Material quality</li> <li>pH, impurity ions</li> </ul>                     |                  |
| <ul> <li>Contributory</li> <li>Environme</li> <li>Materials -<br/>substrate d<br/>metallizatio<br/>isotherm, io</li> <li>Process -<br/>baking, flux</li> </ul> | P Factors:<br>ent – Temperature,<br>- Package Material<br>lielectrics, solder res<br>on (line width/spacing<br>onic content/contam<br>Package Assembly<br>king, soldering, clear | Katayanagi et al. ESPEC Japan Tach-into Field Report<br>Humidity, Voltage, Cor<br>s Selection and Suppli<br>sist, flux and flux residue<br>g and geometry) underfil<br>ination, CTE), <i>etc.</i><br>y<br>hing, <i>etc.</i> | #5. 1996<br><b>htaminants</b><br><b>ers</b><br>, Cu-plating chemistry<br>I chemistry (water ads      | , Cu<br>sorption |
|                                                                                                                                                                | Xuejun Fan                                                                                                                                                                       | Moisture-Related Reliability                                                                                                                                                                                                | y xuejun.fan@lar                                                                                     | nar.edu          |













|                      | References                                                                                                                                                                         | 180 |
|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| • N                  | loisture diffusion modeling (cont'd)                                                                                                                                               |     |
|                      | – E. H. Wong, Y. C. Teo, and T. B. Lim, "Moisture diffusion and vapor pressure modeling of IC                                                                                      |     |
|                      | packaging", 48th Electronic Components and Technology Conference, pp.1372-1378, 1998.                                                                                              |     |
|                      | - T. Y. Tee and Z. W. Zhong, "Integrated vapor pressure, hygroswelling and thermo-mechanical                                                                                       |     |
|                      | stress modeling of QFN package during reflow with interfacial fracture mechanics analysis",                                                                                        |     |
|                      | Microelectronics Reliability, Vol. 44(1), pp. 105-114, 2004.                                                                                                                       |     |
| • 0                  | haracterization, adhesion                                                                                                                                                          |     |
|                      | <ul> <li>X.J. Fan, J. Zhou, and A. Chandra "Package integrity analysis with the consideration of moisture</li> </ul>                                                               |     |
|                      | effects", 58th Electronic Components and Technology Conference (ECTC), 2008                                                                                                        |     |
|                      | - Y. He, and X.J. Fan, "In-situ characterization of moisture absorption and desorption in a thin BT                                                                                |     |
|                      | core substrate", Electronic Components and Technology Conference, pp. 1375-1383, 2007                                                                                              |     |
|                      | - X.Q. Shi, Y.L. Zhang, W. Zhou, and X.J. Fan, "Effect of hygrothermal aging on interfacial reliabili                                                                              | ty  |
|                      | of silicon/underfill/FR-4 assembly", IEEE Transactions of Components and Packaging                                                                                                 |     |
|                      | Technologies, 2008, 31(1), 94-103                                                                                                                                                  |     |
|                      | - H. Shirangi, J. Auersperg et al, "Characterization of dual-stage moisture diffusion, residual                                                                                    |     |
|                      | moisture content, and hygroscopic swelling of epoxy molding compound, EuroSimE 2008, 455-4                                                                                         | 62  |
|                      | - T. Ferguson and J. Qu, "Moisture absorption analysis of interfacial fracture test specimens                                                                                      |     |
|                      | composed of no-flow underfill materials", Journal of Electronic Packaging, Vol. 125, pp 24-30,                                                                                     |     |
|                      | 2003.                                                                                                                                                                              |     |
|                      | - S. Luo and C.P. Wong, "Moisture absorption in uncured underfill materials", IEEE Transactions of                                                                                 | of  |
|                      | Components and Packaging Technologies, Vol. 27, No.2, 345-351, 2004                                                                                                                |     |
|                      | - S. Luo and C.P. Wong, "Influence of temperature and humidity on adhesion of underfills for flip                                                                                  |     |
| ECI                  | Components and Packaging", IEEE Transactions of Components and Packaging Technologies, Vol. 28, No. 1,<br>88-94, 2005 Xuejun Fan Moisture-Related Reliability xuejun.fan@lamar.edu |     |
| and recreating Confi |                                                                                                                                                                                    |     |



|                                | References                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 182    |
|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| • Hy<br>                       | <ul> <li>groscopic swelling</li> <li>X.J. Fan, J. Zhou, and A. Chandra "Package integrity analysis with the consideration of moisture effects", 58th <i>Electronic Components and Technology Conference (ECTC)</i>, 2008</li> <li>X.J. Fan, "Mechanics of moisture for polymers: fundamental concepts and model study", 8th IEEE International Conference on Thermal and Mechanical Simulation and Experiments in Microelectronics and Microsystems, (EuroSimE), April 20-23, 2008</li> <li>T.Y. Tee, C. Kho, D. Yap, C. Toh, X. Baraton, Z. Zhong, "Reliability assessment and hygroswelling modeling of FCBGA with no-flow underfill" <i>Microelectronics Reliability</i>, 2003, pp. 741-749.</li> <li>H. Ardebili, E.H. Wong, and M. Pecht, "Hygroscopic swelling and sorption characteristics of epoxy molding compounds used in electronic packaging", IEEE Trans. Comp. Packag. Technol., Vol. 26 No. 1 (2003) pp. 206-214.</li> <li>E.H. Wong, K.C. Chan, R. Rajoo, T.B. Lim, "The mechanics and impact of hygroscopic swelling of polymeric materials in electronic packaging," <i>Proc. 50th Electron. Comp. Technol. Conf.</i>, Las Vegas, NV, 2000, pp. 576–580.</li> <li>J. Zhou, "Investigation of non-uniform moisture distribution on determination of hygroscopic swelling coefficient and finite element modeling for a flip chip package, <i>IEEE Transactions of Components and Packaging Technologies</i>, 2008 (in press)</li> </ul> | 9<br>f |
| ECCI<br>The Electronic Campoon | 2008 Xuejun Fan Moisture-Related Reliability xuejun.fan@lamar.edu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |



